
Attacking Authentication

Professor Larry Heimann

Web Application Security

Information Systems

Challenge from last class

• Just like fishing, it can be frustrating at times…

• most needed multiple attempts, which is fine — casting

• because of Tamper Data bugs, some just used a hidden field

• most interesting attempts:

• Importance of checking every step of the process

• Simple ways to defend against this attack

Data from an analysis of 320
million passwords recovered
from rockyou.com in 2009

Authentication Technologies

• Various technologies are used, often in combination:

• HTML forms-based

• Multi-factor (passwords & tokens, etc)

• Client SSL certificates & smartcards

• HTTP basic / digest authentication

• Windows-integrated authentication

• Authentication services (e.g. MS Passport)

• The majority of Internet applications use simple forms-based authentication.

• Most authentication flaws can arise with any technology.

The obvious stuff

• Weak passwords

• Ability to enumerate usernames

• Ability to brute force the login

Next Generation Security Software Ltd

88

Web Application (In)security
Attacking Authentication

The obvious stuff

� Weak passwords
� Ability to enumerate usernames

� Ability to brute force the login:

Next Generation Security Software Ltd

88

Web Application (In)security
Attacking Authentication

The obvious stuff

� Weak passwords
� Ability to enumerate usernames

� Ability to brute force the login:

More subtle variations

• The application may require strong passwords but not validate them fully (e.g.
case-insensitive check).

• Login failure messages may be the same on-screen, but contain subtle
differences in the HTML source.

• Timing of different login failures could be different (timing attacks will be an
issue later with injection attacks as well).

• Password guessing may be blocked in the browser but still possible using a
scripted attack, due to reliance on client-side controls, logic flaws, etc.

Exploiting common login defects

• Experiment to determine what password quality rules are enforced.

• Check whether credentials are being validated in full.

• Review every detail of failed login messages to find username enumeration
bugs. Check the page source, HTTP headers, and response times.

• Experiment to identify any account lockout defenses.

• Identify every possible target for mounting a brute force attack.

• Perform password guessing attacks breadth-first not depth-first – that is,
work through a list of common passwords trying each password with every
username in turn. Start with the most obvious and common passwords.

Other authentication functions

• Most applications contain other functionality to support the primary
login, which can often be used to attack the overall mechanism:

• User registration

• Password change

• Account recovery

• “Remember me”

Other authentication functions

• User registration functions very often contain username enumeration flaws,
because the application indicates whether a chosen username is already
registered.

• Password change functions may allow username enumeration and brute
force password guessing even if these are blocked in the main login function.

• “Remember me” functions often contain logic flaws or access control
defects:

Set-Cookie: RememberUser=edgruberman

Set-Cookie: autologin=true

Other authentication functions

• Account recovery functions often involve a secondary challenge which is
presents a considerably lower bar than the main login function (e.g. “Do I own
a pet?”).

• Users assume that only they will see their challenge.

• An attacker can harvest a large number of challenges and choose the easy
ones.

• Username enumeration and brute force password guessing may be possible
even if these are blocked in the main login function

Next Generation Security Software Ltd

93

Web Application (In)security
Attacking Authentication

Other authentication functions

� Account recovery functions often involve a secondary challenge
which is presents a considerably lower bar than the main login
���
��������
��������������	�������

� Users assume that only they will see their challenge.
� An attacker can harvest a large number of challenges and choose

the easy ones.
� Username enumeration and brute force password guessing may be

possible even if these are blocked in the main login function.

Other authentication functions

• Instead of a secondary challenge, account recovery often uses a password
“hint”.

• An attacker can harvest large numbers of hints and then start guessing.

• Following successful completion of the account recovery challenge, the
application often lets you:

• Jump straight into an authentication session.

• Recover the existing password.

• Set a new password directly.

• Receive a recovery URL to an arbitrary email address you specify.

Class Demonstration

Securing authentication

Use strong credentials

• Rules for minimum length, appearance of different character types, upper and lower
case, avoidance of dictionary words, etc.

• Ensure any system-generated values are unpredictable. Handle credentials
secretively.

• Use SSL for all authentication functions (both loading and submission of forms).

• Only transmit credentials using POST requests, and never pass them back to the
client.

• Store credentials using salted one-way hashes.

• “Remember me” functions should only remember usernames.

• Implement a password change function that is also secure.

Securing authentication

Validate credentials properly

• Validate in full, case-sensitively.

• Defend aggressively against unexpected events during login processing (catch all
exceptions and immediately invalidate the session).

• Implement proper access control over user impersonation functions.

Securing authentication

Prevent information leakage

• Remember every piece of functionality where credentials are validated.

• Use a single code component to handle all failed login attempts, and return a
generic message.

• 2 ways self-registration functions can be designed to prevent username enumeration:

• The application can generate its own usernames in an unpredictable way,
avoiding the need to disclose that a selected username already exists.

• The application can use email addresses as initial usernames. The first stage of
registration involves entering an email address, and the application sends an
email containing a one-time registration URL or an indication that the address is
already registered.

Securing authentication

Prevent brute force attacks

• Suspend accounts after a small number of failed logins (e.g. three). Optionally,
reinstate accounts after a short period (e.g. 30 minutes).

• To prevent information leakage, do not identify that any specific account has been
suspended – after a failed login, simply state that accounts are suspended after a
small number of failures.

• Do not disclose the metrics of the suspension policy.

• If an account is suspended, reject login attempts without checking the credentials,
and records an additional failed login.

• Per-account measures will not prevent a stealthy breadth-first attack (for example,
targeting every username with a small number of weak passwords).

• To defend against these attacks, controls like CAPTCHAs can be used

Securing authentication

Defend the password change function

• Allow access to authenticated users only.

• Do not allow users to specify a username (either on-screen or in a hidden request
parameter).

• Require the existing password to be supplied.

• Defend against password guessing and information leakage.

• Notify the user via email that their password has been changed.

Securing authentication

Defend the account recovery function

• Do not use password “hints”

• To enable account recovery, send a one-time URL to the email address which the
user provided during registration. Visiting the URL should allow the user simply to
specify a new password.

• A secondary challenge may also be used before the one-time URL is sent:

• It should use the same question (or set of questions) for all users, rather than user-
specified questions.

• Responses should contain reasonable entropy (e.g. name of first school is preferable
to favorite color).

• Defend against username enumeration and brute force attacks.

Next Class:
Lab 1 on Authentication, Simple Attacks

You will need the following installed on a laptop before next class:

1. Git (1.8.x or higher)

2. Rails (3.2.13)
3. Gems -- rake (10.1.0), faker (1.2.0), thin (1.5.1), will_paginate (3.0.4),
 and sqlite3 (1.3.8)
4. Burp Suite (free version from http://portswigger.net/burp/download.html is fine)
5. Firefox or Chrome with appropriate extensions, tools for
 carrying out simple attacks

http://portswigger.net/burp/download.html

