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Challenge from last class

• Just like fishing, it can be frustrating at times…


• most needed multiple attempts, which is fine — casting 


• because of Tamper Data bugs, some just used a hidden field


• most interesting attempts:


• Importance of checking every step of the process


• Simple ways to defend against this attack



Data from an analysis of 320 
million passwords recovered 
from rockyou.com in 2009



Authentication Technologies

• Various technologies are used, often in combination: 


• HTML forms-based 


• Multi-factor (passwords & tokens, etc) 


• Client SSL certificates & smartcards


• HTTP basic / digest authentication 


• Windows-integrated authentication 


• Authentication services (e.g. MS Passport)


• The majority of Internet applications use simple forms-based authentication. 


• Most authentication flaws can arise with any technology.



The obvious stuff

• Weak passwords


• Ability to enumerate usernames


• Ability to brute force the login
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More subtle variations

• The application may require strong passwords but not validate them fully (e.g. 
case-insensitive check).


• Login failure messages may be the same on-screen, but contain subtle 
differences in the HTML source.


• Timing of different login failures could be different (timing attacks will be an 
issue later with injection attacks as well).


• Password guessing may be blocked in the browser but still possible using a 
scripted attack, due to reliance on client-side controls, logic flaws, etc.



Exploiting common login defects

• Experiment to determine what password quality rules are enforced.


• Check whether credentials are being validated in full.


• Review every detail of failed login messages to find username enumeration 
bugs. Check the page source, HTTP headers, and response times.


• Experiment to identify any account lockout defenses.


• Identify every possible target for mounting a brute force attack.


• Perform password guessing attacks breadth-first not depth-first – that is, 
work through a list of common passwords trying each password with every 
username in turn. Start with the most obvious and common passwords.



Other authentication functions

• Most applications contain other functionality to support the primary         
login, which can often be used to attack the overall mechanism:


• User registration 


• Password change 


• Account recovery 


• “Remember me” 



Other authentication functions

• User registration functions very often contain username enumeration flaws, 
because the application indicates whether a chosen username is already 
registered.


• Password change functions may allow username enumeration and brute 
force password guessing even if these are blocked in the main login function.


• “Remember me” functions often contain logic flaws or access control 
defects: 


Set-Cookie: RememberUser=edgruberman  

Set-Cookie: autologin=true



Other authentication functions

• Account recovery functions often involve a secondary challenge which is 
presents a considerably lower bar than the main login function (e.g. “Do I own 
a pet?”).


• Users assume that only they will see their challenge. 


• An attacker can harvest a large number of challenges and choose the easy 
ones.


• Username enumeration and brute force password guessing may be possible 
even if these are blocked in the main login function
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� Users assume that only they will see their challenge.
� An attacker can harvest a large number of challenges and choose 

the easy ones.
� Username enumeration and brute force password guessing may be 

possible even if these are blocked in the main login function.



Other authentication functions

• Instead of a secondary challenge, account recovery often uses a password 
“hint”.


• An attacker can harvest large numbers of hints and then start guessing.


• Following successful completion of the account recovery challenge, the 
application often lets you:


• Jump straight into an authentication session.


• Recover the existing password.


• Set a new password directly. 


• Receive a recovery URL to an arbitrary email address you specify.



Class Demonstration



Securing authentication

Use strong credentials 

• Rules for minimum length, appearance of different character types, upper and lower 
case, avoidance of dictionary words, etc.


• Ensure any system-generated values are unpredictable. Handle credentials 
secretively.


• Use SSL for all authentication functions (both loading and submission of forms).


• Only transmit credentials using POST requests, and never pass them back to the 
client.


• Store credentials using salted one-way hashes. 


• “Remember me” functions should only remember usernames. 


• Implement a password change function that is also secure.



Securing authentication

Validate credentials properly 

• Validate in full, case-sensitively.


• Defend aggressively against unexpected events during login processing (catch all 
exceptions and immediately invalidate the session).


• Implement proper access control over user impersonation functions.



Securing authentication

Prevent information leakage 

• Remember every piece of functionality where credentials are validated.


• Use a single code component to handle all failed login attempts, and return a  
generic message.


• 2 ways self-registration functions can be designed to prevent username enumeration:


• The application can generate its own usernames in an unpredictable way, 
avoiding the need to disclose that a selected username already exists.


• The application can use email addresses as initial usernames. The first stage of 
registration involves entering an email address, and the application sends an 
email containing a one-time registration URL or an indication that the address is 
already registered.



Securing authentication

Prevent brute force attacks 

• Suspend accounts after a small number of failed logins (e.g. three). Optionally, 
reinstate accounts after a short period (e.g. 30 minutes).


• To prevent information leakage, do not identify that any specific account has been 
suspended – after a failed login, simply state that accounts are suspended after a 
small number of failures.


• Do not disclose the metrics of the suspension policy.


• If an account is suspended, reject login attempts without checking the credentials, 
and records an additional failed login.


• Per-account measures will not prevent a stealthy breadth-first attack (for example, 
targeting every username with a small number of weak passwords).


• To defend against these attacks, controls like CAPTCHAs can be used



Securing authentication

Defend the password change function 

• Allow access to authenticated users only. 


• Do not allow users to specify a username (either on-screen or in a hidden request 
parameter). 


• Require the existing password to be supplied. 


• Defend against password guessing and information leakage. 


• Notify the user via email that their password has been changed.



Securing authentication

Defend the account recovery function 

• Do not use password “hints”


• To enable account recovery, send a one-time URL to the email address which the 
user provided during registration. Visiting the URL should allow the user simply to 
specify a new password.


• A secondary challenge may also be used before the one-time URL is sent:


• It should use the same question (or set of questions) for all users, rather than user-
specified questions.


• Responses should contain reasonable entropy (e.g. name of first school is preferable 
to favorite color).


• Defend against username enumeration and brute force attacks.



Next Class: 
Lab 1 on Authentication, Simple Attacks

You will need the following installed on a laptop before next class: 

1.  Git (1.8.x or higher)  

2.  Rails (3.2.13) 
3.  Gems -- rake (10.1.0), faker (1.2.0), thin (1.5.1), will_paginate (3.0.4),  
     and sqlite3 (1.3.8) 
4.  Burp Suite (free version from http://portswigger.net/burp/download.html is fine) 
5.  Firefox or Chrome with appropriate extensions, tools for  
     carrying out simple attacks

http://portswigger.net/burp/download.html

